

- Modules 4–6	
---------------	--

QUESTION	SCORE	STANDARD	LEARNING TARGET
ı		5.OA.A.I	Solve problems involving order of operations with two types of operation
2		5.NBT.B.6	Use strategies to divide three- and four-digit numbers by one- and two-digit numbers
3		5.NBT.B.6	Use strategies to divide three- and four-digit numbers by one- and two-digit numbers
4		5.NBT.B.6	Use strategies to divide three- and four-digit numbers by one- and two-digit numbers
5		5.NBT.B.7	Add decimal fractions to hundredths (with and without composing)
6		5.NBT.B.7	Add decimal fractions to hundredths (with and without composing)
7		5.NBT.B.7	Subtract decimal fractions to hundredths (with and without decomposing)
8		5.NBT.B.7	Subtract decimal fractions to hundredths (with and without decomposing)
9		5.NF.A.I	Identify equivalent fractions (related and unrelated denominators)
10		5.NF.A.I	Identify equivalent fractions (related and unrelated denominators)
П		5.NF.A.I	Convert common fractions to mixed numbers
12		5.NF.A.1	Convert mixed numbers to common fractions
13		5.NF.A.1	Add common fractions with the same, related, and unrelated denominators
14		5.NF.A.1	Add common fractions with the same, related, and unrelated denominators
15		5.NF.A.1	Add mixed numbers with the same, related, and unrelated denominators
16		5.NF.A.2	Estimate the sum of two common fractions
17		5.NF.A.2	Solve common fraction and mixed number addition word problems
18		5.NF.A.2	Solve common fraction and mixed number addition word problems
19		5.NF.B.3	Represent remainders as fractions
20		5.MD.A.1	Convert between customary units of length
21		5.MD.A.1	Convert between customary units of capacity
22		5.MD.A.1	Convert between customary units of mass
23		5.MD.A.1	Solve customary mass word problems
24		5.MD.A.1	Solve customary capacity word problems
25		5.MD.B.2	Create, describe, and interpret line plots
26		5.G.B.3	Identify acute, right, and obtuse triangles

QUESTION	SCORE	STANDARD	LEARNING TARGET	
27		5.G.B.3	Identify equilateral, isosceles, and scalene triangles	
28		5.G.B.3	Identify equilateral, isosceles, and scalene triangles	
29		5.G.B.3 5.G.B.4	Identify parallelograms	
30		5.G.B.3 5.G.B.4	Identify relationships between quadrilaterals	

I. Solve the problem. Show your thinking.

2. Choose the correct answer.

is the same value as

- (A) 84 ÷ 4 plus 8 ÷ 4
- (B) 8 ÷ 4 plus 4 ÷ 4 plus 8 ÷ 4
- (C) 800 ÷ 4 plus 48 ÷ 4
- (D) 800 ÷ I plus 80 ÷ 4

3. Complete the equation. Show your thinking.

4. Complete the equation. Write the remainder as a whole number.

5. Complete the equation. Show your thinking.

6. Use the standard addition algorithm to calculate the total of 4.1 and 1.07.

7. Complete the equation. Show your thinking.

8. Complete the equation. Show your thinking.

- **9.** Choose the fraction that is equivalent to $\frac{3}{8}$. Show your thinking.
 - \bigcirc A $\frac{6}{24}$
- $\frac{12}{32}$
- C) 4

- **10.** Which pair of common fractions are equivalent to $\frac{2}{5}$ and $\frac{7}{8}$?

 - \bigcirc B $\frac{5}{10}$ and $\frac{12}{16}$
 - $\bigcirc \frac{2}{40} \text{ and } \frac{6}{40}$
 - \bigcirc $\frac{16}{40}$ and $\frac{35}{40}$

II. Write this common fraction as a mixed number. Show your thinking.

12. Write this mixed number as a common fraction. Show your thinking.

13. Write a common fraction to complete the equation. Show your thinking.

14. Write a common fraction to complete the equation. Show your thinking.

$$\boxed{ \begin{array}{c} 10 \\ 4 \end{array}} + \boxed{ \begin{array}{c} 5 \\ 9 \end{array}} = \boxed{ \begin{array}{c} \end{array}}$$

15. Complete the equation. Show your thinking.

16. Choose the closest estimate for the sum of the fractions.

A

- \bigcirc $\mid \frac{1}{2} \mid$
- c) 2
- $D = 2\frac{1}{2}$
- 17. A bag of bananas weighs $\frac{6}{8}$ kg, a bag of apples weighs $l\frac{2}{6}$ kg, and a bag of grapes weighs $\frac{8}{12}$ kg. What is the total mass of the bananas and the grapes? Show your thinking.

18. Two lengths of ribbon are being joined together. One length is $3\frac{7}{8}$ inches long and the other is $1\frac{2}{3}$ inches long. The width of the ribbon is $1\frac{1}{4}$ inches. What is the total length of the ribbon? Show your thinking.

Į.		

19. Oscar has some chain that is 182 inches long. If he cuts it into 8 equal pieces, what will be the length of each piece? Show your thinking.

20. How many inches are equivalent to $2\frac{1}{3}$ yards? Remember, I yard = 36 inches.

,	
	inches
	linches

21. Complete this table.

Gallons	I	
Quarts	4	24
Pints	8	48

- 22. Choose the number of pounds that are equivalent to 20 ounces. Remember, I pound = 16 ounces.
 - (A) I lb
 - \bigcirc $\frac{1}{2}$ lb
 - C | | | | | | | | | | |
 - D 2 lb
- 23. A butcher has 3 trays of ground beef that weigh $2\frac{1}{4}$ pounds each. He also has a tray of chicken fillets that weigh 4 pounds. What is the total mass of all the meat? Show your thinking. Remember, I pound = 16 ounces.

24. A bucket is placed under a leaky faucet. After 8 hours the bucket is checked and it has 0.75 gallon of water in it. How many fluid ounces does the faucet leak every hour? Show your thinking.

I gal = 4 quarts I quart = 32 fl oz

25. This graph shows the mass of some different grocery items.

If all the items that weighed $\frac{2}{8}$ kg or less were placed in a bag together, how much would it weigh? Show your thinking.

26. Choose the best description for this triangle.

- (A) acute triangle
- (B) right triangle
- C obtuse triangle
- (D) equilateral triangle

27. Look at this picture of straws. Choose the triangle that could **not** be made with **three** of the straws.

- (A) equilateral
- B) scalene
- (C) isosceles
- (D) equiangular

28. Choose the isosceles triangle.

29. Choose the shape that is **not** a parallelogram.

30. Choose the statement that best completes the sentence to explain why a rectangle is a type of parallelogram.

A rectangle is a type of parallelogram because

- $\widehat{\mathsf{A}}$ it has two long sides and two short sides.
- (B) it has two pairs of parallel sides.
- C it has four straight sides.
- (D) it has four right angles.